Thermal imaging has been available for decades to detect temperature differences on the skin that could signal breast cancer without exposing patients to radiation, although the method is not as reliable as mammography.
New research performed at UT Dallas and published June 22, 2020, in Nature Research’s Scientific Reports takes a critical step toward making digital infrared thermal imaging more useful for monitoring breast cancer.
Engineers in the Erik Jonsson School of Engineering and Computer Science, working with radiologists at UT Southwestern Medical Center, recruited 11 female patients who volunteered for the study through UT Southwestern and Parkland Health & Hospital System in Dallas. The team used a high-resolution infrared camera, clinical data from patient volunteers, 3D scanning and computer-aided design to build a proofof- concept computer model of the thermal properties of breast cancer.
Dr. Fatemeh Hassanipour, corresponding author of the study and associate professor of mechanical engineering in the Jonsson School, said their goal is to improve digital thermal imaging as a tool for monitoring cancer and its treatment, rather than replacing cancer screening by mammograms.
“Infrared imaging could potentially provide useful information in a diagnostic setting to radiologists,” Hassanipour said. “We want it to be used like a second device for monitoring tumors.”
The research utilized thermal imaging, with the infrared camera taking images of the skin, to identify temperature changes generated by breast cancer as it induces changes to the local vasculature and cellular metabolism. The technique only shows patterns of heat and blood flow on or near the surface of breasts, however, leaving unknown information about tumor activity deeper in the breast tissue.
The UT Dallas researchers worked to address this issue by applying engineering tools to imaging data to develop a model that quantifies the thermal characteristics of breast cancer throughout one patient’s breast. The results showed a detectable temperature difference in metabolic heat generation between the patient’s normal and cancerous breasts. They also noted increased perfusion rates, which is the rate of blood flow through a given volume, in the affected breast.
Hassanipour’s work is supported by a National Science Foundation Faculty Early Career Development Program (CAREER) award, which she received in 2015 to study the biomechanics of breastfeeding.
— Kim Horner